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Abstract. The differential calculus on the quantum supergroupGLq(1|1) was introduced by
Schmidkeet al (1990Z. Phys.C 48 249). We construct a differential calculus on the quantum
supergroupGLq(1|1) in a different way and obtain its quantum Lie algebra. The main structures
are derived without anR-matrix. It is shown that the results can be written with help of a
matrix R̂.

1. Introduction

During the past few years, the theory of quantum groups [1] has become an important
branch of mathematical physics and a new branch of mathematics. A quantum group is
not a group in the ordinary sense of the word, although it is somehow related to a group
in the sense that it is a deformation of a certain structure reflecting the group properties.
In other words, a quantum group coincides with the group for particular values of the
deformation parameter. Quantum (super) groups present the examples of (graded) Hopf
algebras. They have found application in as diverse areas of physics and mathematics as
conformal field theory, statistical mechanics, nonlinear integrable models, knot theory and
solutions of Yang–Baxter equations [2] (and references therein). Many of the remarkable
properties of matrix theory appear to be closely connected to the ideals of noncommutative
geometry [3]. More recently it has been suggested that the zero branes in matrix-theory
should be identified with supercoordinates in noncommutative geometry [4].

Quantum (super)groups can be realized on a quantum (super)space in which coordinates
are noncommuting [5]. Recently the differential calculus on noncommutative space has
been intensively studied both by mathematicians and mathematical physicists. There is
much activity in differential geometry on quantum groups. A noncommutative differential
calculus on quantum groups has been developed by Woronowicz [6] along the lines of the
general ideas of Connes [3]. Wess and Zumino [7] have reformulated the general theory in
an abstract way. A few other methods to construct a noncommutative differential geometry
on a quantum group have been proposed and discussed by several authors (e.g. [8]).

In [9] a right-invariant differential calculus on the quantum supergroupGLq(1|1) has
been constructed and it has been shown that the quantum Lie algebra generators satisfy
the undeformedLie superalgebra. In this paper we present a differential calculus on the
quantum supergroupGLq(1|1) in a different way. This differential structure turns out to
be a differential (graded) Hopf algebra. Although all of the commutation relations among
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the one-forms of [9] are classical, i.e. ‘undeformed’ in this work they areq-deformed. It is
also cited that the obtained relations can be written with help of a matrixR̂.

In this work, we shall use Greek letters to denote fermionic (odd) and Latin letters to
denote bosonic (even) variables.

2. Formalities

Elementary properties of the quantum supergroupGLq(1|1) are described in [10, 11]. We
state briefly the properties we are going to need in this work.

The quantum supergroupGLq(1|1) is defined by, as a group element, the matrices of
the form

T =
(
a β

γ d

)
(1)

where the matrix elements satisfy the following commutation relations [10, 11]

aβ = qβa dβ = qβd
aγ = qγ a dγ = qγ d
βγ + γβ = 0 β2 = 0= γ 2

ad = da + (q − q−1)γβ.

(2)

Let us denote the algebra generated by the elementsa, β, γ , d with the relations (2) byA.
We know that the algebraA is a (graded) Hopf algebra with the following structure.

(1) The usual coproduct

1 : A −→ A⊗A 1(T ) = T ⊗̇T . (3)

(2) The counit

ε : A −→ C ε(T ) = I. (4)

(3) The coinverse (antipode)

S : A −→ A S(T ) =
(
a−1+ a−1βd−1γ a−1 −a−1βd−1

−d−1γ a−1 d−1+ d−1γ a−1βd−1

)
. (5)

It is not difficult to verify the following properties of the costructures:

(1⊗ id) ◦1 = (id⊗1) ◦1 (6)

µ ◦ (ε ⊗ id) ◦1 = µ′ ◦ (id⊗ ε) ◦1 (7)

m ◦ (S ⊗ id) ◦1 = ε = m ◦ (id⊗ S) ◦1 (8)

where id denotes the identity mapping,

µ : C ⊗A −→ A µ′ : A⊗ C −→ A
are the canonical isomorphisms, defined by

µ(k ⊗ a) = ka = µ′(a ⊗ k) ∀a ∈ A ∀k ∈ C (9)

andm is the multiplication map

m : A⊗A −→ A m(a ⊗ b) = ab.
The multiplication inA⊗A follows the rule

(A⊗ B)(C ⊗D) = (−1)p(B)p(C)AC ⊗ BD (10)
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wherep(X) is thez2-grade ofX, i.e. p(X) = 0 for even variables andp(X) = 1 for odd
variables.

In the following section we shall build up the differential calculus on the quantum
supergroupGLq(1|1). We first note the properties of the exterior differential. The exterior
differential d is an operator which gives the mapping from the generators ofA to the
differentials:

d : u −→ du u ∈ {a, β, γ, d}. (11)

We demand that the exterior differential has to satisfy two properties: the nilpotency

d2 = 0 (12)

and the graded Leibniz rule

d(fg) = (df )g + (−1)p(f )f (dg). (13)

We now introduce the algebrâA generated by the matrix elementsα, b, c, δ of T̂ ,

T̂ =
(
α b

c δ

)
(14)

where the matrix elementsα, b, c, δ satisfy the commutation relations [12]

αb = q−1bα αc = q−1cα

δb = q−1bδ δc = q−1cδ

αδ + δα = 0 α2 = 0= δ2

bc = cb + (q − q−1)δα.

(15)

We shall use these relations in the following section.

3. Differential geometric structure of GLq(1|1)

We have seen, in section 2, thatA is an associative algebra (essentially a graded Hopf
algebra) generated by the matrix elements of (1) with the relations (2). A differential
algebra onA is a z2-graded associative algebra� equipped with a linear operator d given
(11)–(13). Furthermore the algebra� has to be generated by�0 ∪ d�0, where�0 is
isomorphic toA.

First, we observe that the matrix elements ofT̂ are given by (14) just as the differentials
of the matrix elements ofT are given by (1). Thus, as in the considerations for the quantum
planes in [7], we can identify, at least formally,

T̂ = dT . (16)

So, let us rewrite the relations (15) in the form

dadβ = q−1dβda dddβ = q−1dβdd

dadγ = q−1dγda dddγ = q−1dγdd

dadd = −ddda (da)2 = 0= (dd)2
dβdγ = dγdβ + (q − q−1)ddda.

(17)

We now denote byAaβ the algebra generated by the elementsa andβ with the relations

aβ = qβa β2 = 0. (18)
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A possible set of commutation relations between the generators ofAaβ ' �0
aβ and

Âdadβ ' d�0
dadβ has the form

ada = Adaa

adβ = F11dβa + F12daβ

βda = F21daβ + F22dβa

βdβ = Bdββ.

(19)

The coefficientsA,B and Fij will be determined in terms of a complex deformation
parameterq. To find them we shall use the consistency of calculus. From the consistency
conditions

d(aβ − qβa) = 0 d(β2) = 0 (20)

and

(aβ − qβa)da = 0 (aβ − qβa)dβ = 0 (21)

we find

F11+ qF22 = q F12+ qF21 = −1 B = 1 (22)

and

F12F22 = 0= (F11− qA)F22. (23)

In fact (22) and (23) are, in disguise, the linear and quadratic consistency conditions similar
to the ones discussed in full generality for quantum planes in [7]. Equation (23) admits two
solutions. If we chooseF22 = 0 we are led to the following commutation relations

a da = q2da a

a dβ = qdβ a + (q2− 1)da β

β da = −qda β

β dβ = dβ β

(24a)

whereA is equal toq2 since this leads to the standardR-matrix (equation (51)).
We denote by�aβ = Aaβ ∪ dAdadβ , the algebra generated by the generatorsa, β (of

A) and the generators da, dβ (of dA) with the relations (18), a parity of (17) and (24a).
Continuing in this way, we can construct the differential algebra�aγ , �βγ , etc. The

final result is given by

a dγ = qdγ a + (q2− 1)da γ

a dd = dd a + (q − q−1)[dγ β − dβ γ + (q − q−1)da d]

β dγ = dγ β + (q − q−1)da d

β dd = −q−1dd β + (1− q−2)dβ d

γ da = −qda γ γ dβ = dβ γ − (q − q−1)da d (24b)

γ dγ = dγ γ γ dd = −q−1dd γ + (1− q−2)dγ d

d da = da d d dβ = q−1dβ d

d dγ = q−1dγ d d dd = q−2dd d.

Thus we have constructed the differential algebra of the algebraA generated by the matrix
elements of any matrix inGLq(1|1). It is not difficult to check that the action of d on (24)
is consistent.
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We note that the differential algebra� = A ∪ dA is a (graded) Hopf algebra with the
following costructure [13]. The coproduct is given by

1̂ : dA −→ dA⊗A 1̂(T̂ ) = T̂ ⊗̇T + (−1)p(T )T ⊗̇T̂ . (25)

Explicity,

1̂(da) = da ⊗ a + dβ ⊗ γ + a ⊗ da − β ⊗ dγ

1̂(dβ) = dβ ⊗ d + da ⊗ β + a ⊗ dβ − β ⊗ dd

1̂(dγ ) = dγ ⊗ a + dd ⊗ γ − γ ⊗ da + d ⊗ dγ

1̂(dd) = dd ⊗ d + dγ ⊗ β − γ ⊗ dβ + d ⊗ dd.

(26)

The counit is given by

ε̂ : dA −→ C ε̂(T̂ ) = 0 (27)

and the coinverse

Ŝ : dA −→ dA Ŝ(T̂ ) = −(−1)p(T
−1)T −1T̂ T −1. (28)

The central element is

D̂ = bc−1− αc−1δc−1 (29)

whereT̂ = dT , i.e. D̂ commutes with the generators ofA and also with the generators of
Â.

It is not difficult to verify that the mapŝ1 and ε̂ are both algebra homomorphisms and
Ŝ is an algebra anti-homomorphism. The three maps also satisfy the properties (6)–(8), and
they preserve the relations (24) provided that the actions on the generators ofA of 1̂, ε̂
and Ŝ are the same as (3)–(5).

4. The Cartan–Maurer forms in Ω

In analogy with the right-invariant one-forms defined on a Lie group in classical differential
geometry, one can construct the matrix valued one-formW where

W = dT T −1. (30)

If we set

T −1 =
(
A B

C D

)
(31)

as the superinverse ofT ∈ GLq(1|1), we write the matrix elements (one-forms) ofW

w1 = daA+ dβC u = daB + dβD

w2 = ddD + dγB v = dγA+ ddC.
(32)
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First, we obtain the commutation relations between the matrix elements ofT andT −1 as
follows:

aA = q2Aa + 1− q2 dA = Ad
aD = Da dD = q2Dd + 1− q2

aB = qBa dB = qBd
aC = qCa dC = qCd
βA = qAβ γA = qAγ
βD = qDβ γD = qDγ
βB = Bβ γB = −q2Bγ

βC = −q2Cβ γC = Cγ.

(33)

Using these relations, we now find the commutation relations of the matrix entries of
T with those ofW :

aw1 = q2w1a dw2 = q−2w2d + (q−2− 1)vβ

aw2 = w2a + (q−2− 1)uγ + (q − q−1)2w1a dw1 = w1d

au = qua du = q−1ud − (q − q−1)w1β

av = qva + (q − q−1)w1γ dv = q−1vd

βw1 = −q2w1β γw2 = −q−2w2γ + (1− q−2)va

βw2 = −w2β + (1− q−2)ud − (q − q−1)2w1β γw1 = −w1γ

βu = quβ γu = q−1uγ − (q − q−1)w1a

βv = qvβ + (q − q−1)w1d γ v = q−1vγ.

(34)

These relations (with a few exceptions) are different from those of [9].
To obtain commutation relations among the Cartan–Maurer one-forms we shall use the

commutation relations between the matrix elements ofT −1 and the differentials of the matrix
elements ofT which are given in the following

Ada = q−2daA Add = ddA

Adβ = q−1dβA Adγ = q−1dγA

Dda = daD Ddd = q2ddD + (q2− 1)(dγB − dβC)− (q − q−1)2daA

Ddβ = qdβD + (q − q−1)daB Ddγ = qdγD + (q − q−1)daC

Bda = −q−1daB Bdγ = dγB + (q−2− 1)daA

Bdβ = dβB Bdd = −qddB − (q − q−1)dβA

Cda = −q−1daC Cdβ = dβC + (1− q−2)daA

Cdγ = dγC Cdd = −qddC − (q − q−1)dγA.

(35)

We now obtain the commutation relations of the Cartan–Maurer forms, using (35) and
(17), as follows:

w1u = uw1 uw2 = q2w2u+ (1− q2)w1u

w1v = vw1 w2v = q2vw2+ (1− q2)vw1

w2
1 = 0 w2

2 = (1− q2)vu uv = q2vu w1w2+ w2w1 = (1− q2)vu.

(36)

Again, one can check that the action of d on (34) and also on (36) is consistent.
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Note that although the Cartan–Maurer one-forms of [9] satisfyq-independent
commutation relations, i.e. they are identical to the classical ones, in the present work
they satisfy theq-dependent relations.

5. Quantum Lie algebra

In this section we shall obtain the deformed Lie superalgebra of the Lie algebra generators.
First, we write, from (30), the Cartan–Maurer forms as

da = w1a + uγ dβ = w1β + ud
dd = w2d + vβ dγ = w2γ + va.

(37)

We can write dW in the form

dW = σ3Wσ3W σ3 =
(

1 0
0 −1

)
. (38)

In terms of the two-forms, these become

dw1 = w2
1 − uv du = w1u− uw2

dw2 = w2
2 − vu dv = w2v − vw1.

(39)

We can now write down the Cartan–Maurer equations in our case:(
dw1 du
dv dw2

)
=
( −uv q2(w1− w2)u

−(w1− w2)v −uv
)
. (40)

The commutation relations of the Cartan–Maurer forms allow us to construct the algebra
of the generators. To obtain the quantum Lie algebra we write down the exterior differential
in the form

d= w1T1+ w2T2+ u∇+ + v∇−. (41)

Considering an arbitrary functionf of the group parameters and using the nilpotency of
the exterior differential d one has

(dwi)Tif + (dui)∇if = widTif − uid∇i (42)

where

wi ∈ {w1, w2} ui ∈ {u, v} ∇i ∈ {∇+,∇−}.
With the Cartan–Maurer equations we find the following commutation relations for the
quantum Lie algebra:

[T1,∇+] = −q2∇+ + (q2− 1)T2∇+
[T2,∇+] = q2∇+ + (1− q2)T2∇+
[T1,∇−] = q2∇− + (1− q2)∇−T2

[T2,∇−] = −q2∇− + (q2− 1)∇−T2

[T1, T2] = 0 ∇2
± = 0

∇−∇+ + q−2∇+∇− = T1+ T2+ (q−2− 1)(T 2
2 + T1T2)

(43)

or with new generatorsX = T1+ T2 andY = T1− T2,

[X,∇±] = 0 [X, Y ] = 0 ∇2
± = 0

[Y,∇+] = −2q2∇+ + (q2− 1)(X − Y )∇+
[Y,∇−] = 2q2∇− + (1− q2)∇−(X − Y )
∇+∇− + q2∇−∇+ = q2X + (1− q2)(X2−XY).

(44)
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We also note that the commutation relations (43) of the Lie algebra generators should
be consistent with monomials of the group parameters. To proceed, we must calculate the
actions of the Leibniz rule by comparing the elements which lie together with each other
from the Cartan–Maurer froms:

T1a = a + q2aT1+ (q − q−1)2aT2+ (q − q−1)γ∇−
T1β = β + q2βT1− (q − q−1)2βT2− (q − q−1)d∇−
T1γ = γ T1− (q − q−1)a∇+ T1d = dT1− (q − q−1)β∇+
T2a = aT2 T2d = d + q−2dT2

T2β = βT2 T2γ = γ + q−2γ T2

∇+a = γ + qa∇+ + (q−2− 1)γ T2 ∇+d = q−1d∇+
∇+β = d − qβ∇+ + (q−2− 1)dT2 ∇+γ = −q−1γ∇+
∇−a = qa∇− ∇−d = β + q−1d∇− + (q−2− 1)βT2

∇−β = −qβ∇− ∇−γ = a − q−1γ∇− + (q−2− 1)aT2.

(45)

Note that these commutation relations must be consistent. In fact, it is easy to see that
the nilpotency of∇2

± = 0 is consistent with

∇2
±a = q2a∇2

±.

Also, the commutation relations ofT1, T2 with ∇− are consistent with

([T1,∇−] − q2∇− + (q2− 1)∇−T2)a = qa([T1,∇−] − q2∇− + (q2− 1)∇−T2)

(T2∇− − q2∇−T2+ q2∇−)a = qa(T2∇− − q2∇−T2+ q2∇−).
Furthermore,

(T1T2− T2T1)a = (q−3− q−1)γ (T2∇− − q2∇−T2+ q2∇−)
and

(∇−∇+ + q−2∇+∇− − T1− T2− (q−2− 1)(T 2
2 + T1T2))a

= q2a(∇−∇+ + q−2∇+∇− − T1− T2− (q−2− 1)(T 2
2 + T1T2)).

Similarly, one can find the other relations.

6. R-matrix approach

In this section we wish to obtain the relations (17), (24), (34) and (36) with the help of a
matrix R̂ that acts on the square tensor space of the supergroup. Of course, the matrixR̂ is
a solution of the quantum (graded) braided group equation.

We first consider the quantum superplane and its dual [5]. The quantum superplaneAq
is generated by coordinatesx andθ , and the commutation rules

xθ = qθx θ2 = 0. (46)

The quantum (dual) superplaneA∗q is generated by coordinatesϕ andy, and the commutation
rules

ϕ2 = 0 ϕy = q−1yϕ. (47)

We demand that relations (46), (47) are preserved under the action ofT , as a linear
transformation, on the quantum superplane and its dual:

T : Aq −→ Aq T : A∗q −→ A∗q . (48)
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Let X = (x, θ)t and X̂ = (ϕ, y)t . Then, as a consequence of (48) the pointsTX andT X̂
should belong toAq andA∗q , respectively, which give the relations (2).

Similarly, let us consider linear transformationsT̂ with the following properties

T̂ : Aq −→ A∗q T̂ : A∗q −→ Aq. (49)

Then the pointsT̂ X and T̂ X̂ should belong toA∗q and Aq , respectively. This case is
equivalent to (17).

Note that the relations (46) can be written as follows:

X ⊗X = q−1R̂X ⊗X (50)

where

R̂ =


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 −q−1

 . (51)

We can also write mixed relations between the component ofX andX̂ as follows:

(−1)p(X)X ⊗ X̂ = qR̂X̂ ⊗X (52)

whereX̂ = dX.
Using (48) together with (50) and (52), we now derive anew the quantum supergroup

relations (2) from equation [9]

R̂T1T2 = T1T2R̂ (53)

where, in usual grading tensor notation,T1 = T ⊗ I andT2 = I ⊗ T . Similarly using (52),
we obtain the following equation

(−1)p(T1)T1T̂2 = R̂T̂1T2R̂ (54)

which is equivalent to the relations (24). The equation

T̂ ′1T̂2 = (−1)p(T̂1)R̂T̂1T̂2R̂ T̂ ′1 = d((−1)p(T1)T1) (55)

gives the relations (17). TakinĝT = WT and using (55) one has

(−1)p(T1)T1W2 = R̂W1R̂T1 (56)

which gives the relations (34). Finally, from (55) we find that

(−1)p(W1)W1R̂W1R̂
−1+ (−1)p(W1)R̂W1R̂W1 = 0. (57)

This equation is equivalent to (36).

7. Discussion

This paper may be considered as an alternative to the approach proposed earlier by Schmidke
et al [9]. They have consructed a right-invariant differential calculus on the quantum
supergroupGLq(1|1) and showed that the quantum Lie algebra generators satisfy the
undeformed Lie superalgebra. Their starting point is to evaluate theq-commutation relations
of the group parameters (the matrix elements of the matrix inGLq(1|1)) with the Cartan–
Maurer forms, directly. They have assumed that ‘the right action of the group suggests
that a and β, and, γ and d (the matrix elements in (1)) satisfy the same relations as
the forms’. The starting point of this paper, however, is to evaluate theq-commutation
relations of the matrix elements with their differentials. Later, using these relations the
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q-commutation relations of the matrix elements with the Cartan–Maurer forms are obtained
without any further assumptions. In [9], the commutation relations of the Cartan–Maurer
forms are obtained by using theq-commutation relations of the matrix elements with the
Cartan–Maurer forms, i.e. to obtain the desired commutation relations they have applied the
exterior differentialδ on the relations of the matrix elements with the Cartan–Maurer forms.
In this work we also use the same approach. But although the Cartan–Maurer forms in
[9] satisfy q-independent relations, in the present paper they satisfyq-dependent relations.
Since in [9], the Cartan–Maurer forms satisfy undeformed (q-independent) relations, the
quantum Lie algebra obtained is also undeformed.

The work of [9] does not allow anR-matrix approach. In our work we have derived
the q-commutation relations between the matrix elements and their differentials without
considering anR-matrix at first. However, we later show that these relations can also be
derived using anR-matrix. ThisR-matrix turns out to be the same as that used by Wess
and Zumino [7] for the commutation relations between coordinates and their differentials
for theGLq(2) invariant calculus on theq-plane.
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